Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Biol Eng ; 17(1): 74, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012588

RESUMO

Reconstruction of severe osteochondral defects in articular cartilage and subchondral trabecular bone remains a challenging problem. The well-integrated bilayer osteochondral graft design expects to be guided the chondrogenic and osteogenic differentiation for stem cells and provides a promising solution for osteochondral tissue repair in this study. The subchondral bone scaffold approach is based on the developed finer and denser 3D ß-tricalcium phosphate (ß-TCP) bioceramic scaffold process, which is made using a digital light processing (DLP) technology and the novel photocurable negative thermo-responsive (NTR) bioceramic slurry. Then, the concave-top disc sintered 3D-printed bioceramic incorporates the human adipose-derived stem cells (hADSCs) laden photo-cured hybrid biohydrogel (HG + 0.5AFnSi) comprised of hyaluronic acid methacryloyl (HAMA), gelatin methacryloyl (GelMA), and 0.5% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker. The 3D ß-TCP bioceramic compartment is used to provide essential mechanical support for cartilage regeneration in the long term and slow biodegradation. However, the apparent density and compressive strength of the 3D ß-TCP bioceramics can be obtained for ~ 94.8% theoretical density and 11.38 ± 1.72 MPa, respectively. In addition, the in vivo results demonstrated that the hADSC + HG + 0.5AFnSi/3D ß-TCP of the bilayer osteochondral graft showed a much better osteochondral defect repair outcome in a rabbit model. The other word, the subchondral bone scaffold of 3D ß-TCP bioceramic could accelerate the bone formation and integration with the adjacent host cancellous tissue at 12 weeks after surgery. And then, a thicker cartilage layer with a smooth surface and uniformly aligned chondrocytes were observed by providing enough steady mechanical support of the 3D ß-TCP bioceramic scaffold.

2.
Polymers (Basel) ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631885

RESUMO

Developing a biomaterial suitable for adipose-derived stem cell (ADSCs)-laden scaffolds that can directly bond to cartilage tissue surfaces in tissue engineering has still been a significant challenge. The bioinspired hybrid hydrogel approaches based on hyaluronic acid methacryloyl (HAMA) and gelatin methacryloyl (GelMA) appear to have more promise. Herein, we report the cartilage tissue engineering application of a novel photocured hybrid hydrogel system comprising HAMA, GelMA, and 0~1.0% (w/v) acrylate-functionalized nano-silica (AFnSi) crosslinker, in addition to describing the preparation of related HAMA, GelMA, and AFnSi materials and confirming their related chemical evidence. The study also examines the physicochemical characteristics of these hybrid hydrogels, including swelling behavior, morphological conformation, mechanical properties, and biodegradation. To further investigate cell viability and chondrogenic differentiation, the hADSCs were loaded with a two-to-one ratio of the HAMA-GelMA (HG) hybrid hydrogel with 0~1.0% (w/v) AFnSi crosslinker to examine the process of optimal chondrogenic development. Results showed that the morphological microstructure, mechanical properties, and longer degradation time of the HG+0.5% (w/v) AFnSi hydrogel demonstrated the acellular novel matrix was optimal to support hADSCs differentiation. In other words, the in vitro experimental results showed that hADSCs laden in the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi not only significantly increased chondrogenic marker gene expressions such as SOX-9, aggrecan, and type II collagen expression compared to the HA and HG groups, but also enhanced the expression of sulfated glycosaminoglycan (sGAG) and type II collagen formation. We have concluded that the photocured hybrid hydrogel of HG+0.5% (w/v) AFnSi will provide a suitable environment for articular cartilage tissue engineering applications.

3.
Mater Sci Eng C Mater Biol Appl ; 124: 112072, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947564

RESUMO

Bioprinting of most cell-laden hydrogel scaffolds with the required structural integrity, mechanical modulus, cell adhesion, cell compatibility, and chondrogenic differentiation are still significant issues that affect the application of bioinks in cartilage tissue engineering. This study focuses on constructing printable bioinks by combining adipose-derived stem cells (ADSCs), hyaluronic acid (HA)-based hydrogels and analyzing their ability to induce chondrogenesis using 3D bioprinting technology. First, biotinylated hyaluronic acid was synthesized via an adipic acid dihydrazide (ADH) linker with amide bond formation to form HA-biotin (HAB). Both HAB and the as-received streptavidin were mixed to form a partially cross-linked HA-biotin-streptavidin (HBS) hydrogel through noncovalent bonding. After that, the partially cross-linked HBS hydrogel was mixed with sodium alginate and subsequently printed to form the HBSA hydrogel 3D scaffolds using a bioprinter. Finally, the 3D scaffolds of the HBSA (HBS + alginate) hydrogel were submerged into CaCl2 solution to achieve a stable 3D HBSAC (HBSA + Ca2+) hydrogel scaffold through ion transfer crosslinking. The physical-chemical characteristics of the hybrid bioink compositions have been evaluated to determine the desired 3D bioprinting structure. Cytotoxicity and chondrogenic differentiation were also assessed to confirm that the double cross-linked HBSAC hydrogel scaffold was useful for chondrogenic formation. The results showed that partially crosslinking the biotinylated HA-based hydrogel with streptavidin has a significant effect on printability and structural integrity. Morphological analysis of a suitable 3D printed HBSAC hydrogel scaffold showed visible pores with the desired shape and geometry. We have concluded that the HBSAC hydrogel possesses a favorable biocompatibility profile. The HBSAC hydrogel can also secrete significantly higher amounts of chondrogenic marker genes at day 5 and sulfated glycosaminoglycans (sGAGs) from days 7 to 14 compared to the HA hydrogel, as determined via quantitative real-time PCR assay and Alcian blue staining and the DMMB assay.


Assuntos
Bioimpressão , Condrogênese , Ácido Hialurônico , Hidrogéis , Impressão Tridimensional , Células-Tronco , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...